订阅
纠错
加入自媒体

边缘计算将如何影响人工智能?

人工智能是通过计算机模拟人脑思维逻辑的一种技术,它可以进行语言识别、人脸识别、图像识别以及无人驾驶等多种场景。人工智能拥有从感知、分析运算到决策的强大能力,能取代人类智力型工作,已经成为人们热议的主要话题,其影响力之大足以掀起新一轮科技革命。

万物互联时代会产生巨大数据,如果这些数据都要传输到云端平台处理,那么这对网络造成巨大的负载。因此,边缘计算就应势而生,在设备端对部份数据进行分析处理,将能解决掉网络拥堵的问题,同时能提供运行系统的效率和减轻云端平台的负载。

随着边缘计算的进步以及越来越强大的芯片推出,本地设备的运算能力将不断增强,使得人工智能算法能够在没有网络,离开云计算的情况下正常运行。

离开网络和云计算,AI也能运行

最近,滑铁卢大学一个人工智能项目研究人员表示,他们可以让人工智能够在离开计算机和内存的情况下正常运行。这听起来似乎有点不可思议,如果他们真能做到这样,就意味神经网络不再受到互联网和云计算的影响。

科学家认为他们可以引导AI在不需要大量资源的条件下进行机器学习,其优点是达到更好的隐私性,数据发送成本低以及具有携性等特点,即使在偏远的地区也能使用到人工智能程序。

其主要实施方法是将神经网络置于虚拟环境当中,设计自然复制的能力,然后逐步重复剥夺硬件和网格资源,让人工智能程序学习自主适应环境的能力。

通常人工智能需在较大功率和处理能力的PC上运行,但科学家认为机器本身需要学会处理现实环境局限性的问题,即使它没有大量的资源可以借鉴,也能够进行运算,深度学习程序能通过改变自身来适应环境和保持运转。

低功耗芯片,AI迎来全新的格局

当离开人工智能实验室的计算机和存储器后,人工智能载体将会变得更小,从而使得这些程序能够边缘计算环境中生存下去。例如把深度学习引擎安装到机器人、智能手机或者无人机等产品的芯片上,其连通性和重量将是重点考虑的一个问题,设计者需要最大限度降低硬件体积和重量,但又要确保人工智能的正常运行。

在过去,人工智能运算成本非常昂贵,主要原因是依赖于庞大的平行运算,即是需要同时使用多种计算资源解决计算问题。如今,随着芯片技术的进步,新一代人工智能芯片诞生,如Google的TPU、寒武纪的DianNao系列、Eyeriss的NPU、华为的麒麟970芯片等,预计各种人工智能苾片将会陆续推出,这些产品基本都朝着低功耗、高吞吐量的方向发展。

1  2  下一页>  
声明: 本网站所刊载信息,不代表OFweek观点。刊用本站稿件,务经书面授权。未经授权禁止转载、摘编、复制、翻译及建立镜像,违者将依法追究法律责任。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    云计算 猎头职位 更多
    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号