订阅
纠错
加入自媒体

边缘计算是云计算的终结者?No,云计算巨头们正在推动边云协同!

2018-09-13 01:45
物联网智库
关注

由于边缘计算千人千面的基本特征,因此在边云协同的过程中,不同层次的边缘与云平台之间构成了多层结构,应用程序的工作负载通过在各个层次之间动态分配资源来调度。基础设施边缘和设备边缘都可以被视为集中式云平台的补充,甚至是现有云平台的扩展。

由“千人千边”衍生的另一个问题是,对于边云协同的市场规模估算的不一致性,导致不同企业对边云协同的重视程度相差极大,边云协同的重要性很容易被高估或者低估。

看好边缘计算的激进代表包括戴尔公司的首席执行官兼董事长迈克尔·戴尔,他说:“我认为边缘将比云更大。”

不同的市场研究机构也对边缘计算市场给出了各自的估算。

Gartner预测到2021年,由于考虑到时间延迟和带宽需求,40%的大型企业会将边缘计算纳入项目范围,2017年这一比例仅为不到1%。

IDC预测到2020年,边缘计算的相关支出将占到物联网所有支出的18%。到2022年,物联网的整体支出将达到1.2万亿美元,而边缘计算的相关支出则为2160亿美元。

Grand View Research认为到2025年,全球边缘计算市场将达到32.4亿美元,复合年增长率超过40%。

Transparency Market Research估算2017年全球边缘计算市场约为80亿美元,并预计到2022年底将达到133亿美元。

Stratistics MRC对于2017年的市场估算与Transparency Market Research一致,约为80亿美元。Stratistics MRC还进一步预测到2026年,边缘计算的市场规模将达205亿美元。

如何通过边云协同进行有效的数据分析?

数据分析是将数据转化为信息的过程,为运营决策提供新的洞察和见解,如果说数据是新型“石油”,那么数据分析就是驱动其产生价值的新型“引擎”,数据分析的质量,在一定程度上决定着物联网项目的价值上限。

曾经大多数数据分析都在云端进行,而如今随着边云协同的推进,边缘分析可以降低数据存储、通讯和处理的成本,去除不必要的数据噪声,更多的数据分析正在回到边缘进行处理。

一般而言,如果某项应用场景具有良好的信息源,且业务问题有清晰的解决逻辑,那么数据分析的重点应该放到边缘。在更复杂的情况下,为了处理好多种数据源和多重变量,边云协同需要综合考虑处理速度、可靠性、安全性、带宽需求和复杂度。

处理速度:数据类型和数量,以及业务决策的时间限制都会影响对于处理速度的要求。边缘计算采用分布式计算架构,由于将运算分散在靠近数据源的近端设备处理,不再需要远距离把数据回传云端处理,实时性更好、效率更高、延迟更短。

可靠性和安全性:可靠性和安全性虽有很大不同,但仍有大颗粒度相似需求,暂时放到一起考虑。互联设备可以通过边缘应用,同步设备数据以及与其他设备安全通信,甚至无需连接互联网,最大程度地提升可靠性、安全性和隐私保护能力。但是一些重要数据,仍旧需要回传到云端,进行保存以便进行长期趋势分析。

带宽需求:带宽是远程控制中需要考虑的一个重要问题。边云协同的数据量直接决定了数据分析的成本,如果监控一台风力发电机上的100个参数,每隔10分钟回传一次数据到云平台,那么每天的数据量就是14400,这还仅仅只对应一台风机。

有些公司正在采用最新LPWAN技术来缓解向云端发送大量数据的成本问题,但带宽问题仍旧是边云协同无法绕过的一个现实因素。

复杂度:复杂度是划分云端和边缘应用负载的有效分水岭。云端学习、边缘执行,是处理复杂问题的大致思路。以一个啤酒厂的应用为例,如果分析某一款啤酒被过度发酵的问题,边缘计算完全可以胜任和处理。如果想要研究每款啤酒的发酵周期,并在不同种类的啤酒之间进行横向对比,那么云端分析可以很好的解决这个数学问题。

大多数预测性维护的问题都可以在边缘解决,这种问题一名工程师或者操作员就能很好的处理。但是如果解决的问题是工厂的综合生产效率提升问题,就需要在云平台中将来自多个场景的监测数据进行综合分析,并且很难给出快速反馈。也佐证了边缘和云端各有长短板、各有上下限,因此协同必将成为合理而主流的走向。

本文小结:

1. 边缘计算和云计算并非互斥关系,由于边缘计算解决了“最后一公里”云原生应用的供应问题,成为了云计算在未来发展中的重要落地支撑,边缘计算与云计算势必彼此融合,来到“边云协同”的新阶段。

2. 与云平台不同,对于边缘的理解千人千面。因此在边云协同的过程中,不同层次的边缘与云平台之间构成了多层结构,应用程序的工作负载通过在各个层次之间动态分配资源来调度,同时边云协同的重要性很容易被高估或者低估。

3. 云端学习、边缘执行,是处理复杂问题的大致思路。为了处理好多种数据源和多重变量,边云协同需要综合考虑处理速度、可靠性、安全性、带宽需求和复杂度。

附录:2018年最新版边缘计算企业图谱

参考资料:

CBInsights: What Is Edge Computing?

Introduction to Edge Computing in IIoT

State of the Edge 2018

<上一页  1  2  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    云计算 猎头职位 更多
    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号