面向云服务的起重装备健康监测一体化系统
四、基于健康监测的起重装备云平台
1.云平台基础架构设计
通过对起重机各种数据源和起重机健康管理特性分析,需要对起重机特征工程数据、视频数据、天气数据、实时业务监测数据和其他应用数据进行采集和分析处理。利用大数据采集、存储、分析、挖掘技术,从起重机采集到的海量数据中挖掘、提炼关键信息,建立安全、故障信息关联分析监测模型,及时洞察和响应起重机运行状态,实现起重机安全、健康和故障预测。经过以上分析,满足分布式计算、实时流计算、非结构化数据处理的大数据平台可以分为四层,分别是应用层、接口层、分析层和存储层,它们的关键技术和技术特征如图7所示。
图7 基于健康监测的起重装备云平台整体架构图
2.云平台功能模块划分
根据系统需求分析,该系统平台可以分成六大子系统,具体功能划分如图8所示。
图8 平台功能划分
1)综合管理系统
综合管理系统主要实现对资源、角色及用户的分配与管理,系统能够根据实际需要动态调整用户的角色及权限。为保障起重机系统平台的安全运行,对不同管理者提供不同的权限,对用户身份进行验证,所提供的功能有查看、检索、修改、增加和删除等不同操作。
系统管理员进入系统之后,可以查看所有起重机分布情况及监控设备的实时状态,为企业设备管理人员对设备维护提供了科学的数据基础,便于综合管理。
2)安全监控系统
起重机安全监控系统由硬件和软件组成,其单元构成应包括信息采集单元、信息处理单元、控制输出单元、信息存储单元、信息显示单元、信息导出接口单元等,并根据远程控制要求预留远程传输单元。本系统主要实现对安全监控系统的升级改造和远程数据的传输、接收和显示等远程管理功能。
3)健康监测系统
本系统提供对起重机的电动机、减速机、制动器及支撑机构四个关键部位进行监测,各个监测技术已经在前面章节做了详细介绍,采集和集成技术在上一节也有了相关说明,平台上面的健康监测系统这里考虑监测数据的呈现方式。
综合各个监测系统的特点,这里主要采用矢量图的方式进行数据呈现。矢量图又称电图,是把要显示的模拟量按照时间的顺序显示在屏幕上。矢量图是基于X-Y模式显示,X(水平)轴表示数据出现的实际顺序,Y(垂直)轴表示被显示数值,刻度将根据实测值进行自动调整,每个物理量在屏幕上形成一个点,这些点分布在屏幕上组成一幅幅变化的图形,这些图形就是物理量的变化轨迹。
4)状态诊断系统
根据起重机电动机的结构特点,采用振动加速度传感器,对其机座、轴承的垂直径向、水平径向和轴向三个方向进行振动监测。同时针对电动机转轴安装相应的转速传感器,为振动信号的分析提供基频参考信息。通过实时监测采集电动机机座、轴承的振动信号以及转轴的转速信号,做时域、频谱等相关分析并提取振动信号的时频域故障特征参数,能够准确判断电动机的振动故障发生。
减速机轴承的振动信号以及高速轴转速中含有丰富的减速机运行状态信息,监测其轴承的振动加速度信号是提取减速箱内部运行状态信息最常用而有效的方法,而其高速轴的转速可为振动信号的分析提供基频参考信息。采用有效的方式对轴承的振动信号以及高速轴转速进行监测,并对数据进行放大、滤波整形、检波处理,最后采用包络分析、倒谱分析,从而预报减速机早期的故障状态。
通过分析制动器位移监测数据的时间变化曲线,应用特征处理方法,拟合制动器的制动曲线,进而可以判断制动器的制动性能,为设备管理人员提供设备维修的技术支持。
5)故障预测系统
故障预测系统主要是利用现有的机电设备故障/失效预测的方法预测是否在未来时间发生故障,本系统主要采用时间序列模型与灰色模型综合以后进行故障预测。因为两种模型在数列预测中各有所长:灰色模型适用于描述具有确定性指示函数规律的过程,而时间序列模型适用于分析平稳的随机性信号。采用组合模型发挥二者的优势,会有效提高数据的预测精度与速度。
6)预知维修系统
通过对在役起重机故障模式进行归纳整理,并对故障的产生原因、检测方式进行系统的分析。通过综合整理起重机的故障模式、故障原因及其故障影响,采用风险优先数(RPN)分析方法,考虑故障模式的发生度、检测度以及故障影响的严酷度,确定故障模式危害度。针对起重机重要功能产品,依据规范化的逻辑决断方法,确定其故障的预防性维修对策,并通过现场的故障统计、专家评估以及定量化建模等手段,在保证安全性和完好性的前提下,以维修停机损失最小为目标,优化系统的维修策略,为起重机的维护保养及设备管理提供决策依据。
最新活动更多
-
12月19日立即报名>> 【线下会议】OFweek 2024(第九届)物联网产业大会
-
即日-2025.8.1立即下载>> 《2024智能制造产业高端化、智能化、绿色化发展蓝皮书》
-
精彩回顾立即查看>> 2024先进激光技术博览展
-
精彩回顾立即查看>> 全数会2024中国深圳智能制造与机器人展览会
-
精彩回顾立即查看>> 2024(第五届)全球数字经济产业大会暨展览会
-
精彩回顾立即查看>> 维科杯·OFweek2024中国工业自动化及数字化行业年度评选
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论